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Abstract

A theoretical model simulating the properties of frictional bridging is presented and relatively perfect stress solutions for

the fiber and matrix are obtained. Based on the energy equilibrium in the process of interfacial debonding, an expression for the energy re-
lease rate G is derived to explore the interfacial fracture properties. By introducing an interfacial debonding criterion G=T, amethod for
determining the critical debond length is proposed and the bridging constitutive relationship is also obtained. Numerical calculations are
conducted for the fiber-reinforced composite SCS-6/T;-6Al-4V and the results are also compared with those obtained by using other exist-

ing models.

Keywords: interfacial stress transfer, frictional sliding, energy release rate, bridging constitutive relationship, fiber-reinforced

composites.

An important toughening mechanism is bridging
of matrix cracks by fibers in fiber-reinforced compos-
ites, where complicated friction and sliding occur at
the debonded interface. The mechanical performances
of composites depend mainly on the interfacial proper-
ties, which are relevant to the development of differ-
ent types of failure! 2.

Because the bridging loads exerted by fibers on
matrix cracks are pull-out loads for fibers, microme-
chanical test on fiber pull-out has become a widely
used method for exploring the properties of interfacial
fracture and failure. For the study of fiber pull-out,
the interfacial-shear- strength-based criterion is ques-
tionable, which arises mainly from two reasons: (1)
The criterion depends on practical models and may be
used only for qualitative comparisons of various inter-
faces; (2) Hampe!®! and Piggott!*]
experimental studies that a debonded interface may
appear before the interfacial shear stress reaches the
interfacial shear strength. By contrast, according to
the energy-based interfacial debonding criterion, the

pointed out from

interface crack is assumed to propagate when the en-
ergy release rate G exceeds the interfacial debonding
toughness I';, where G is interpreted as the energy
changes when the interface crack with the length of
L 4 advances a length dL 4. The energy-based debond-

ing criterion has been verified to be more superior

than the shear-strength-based criterion!>¢).

Because the energy-based interfacial debonding
criterion depends on the stress and strain fields at the
debonded and bonded regions, accurate predictions of
the stress distributions in the fiber and matrix are
very important. Jiangm and Hsueh!® applied the
shear-lag models, and Liu® applied the Lamé
method to derive expressions for the energy release
rate G. However, they neglected some terms such as
the shear stress and strain energy in the fiber, the in-
terfacial radial stress, the variations of axial stress in
the matrix with the radial positions, the axial dis-
placements in the fiber and matrix at the bonded re-
gions, and the Poisson’s effect, etc. By averaging
the axial stress in the matrix only as a function of the
axial positions, Chiang!!®! derived an expression for
the energy release rate G, including the axial strain
energies in the fiber, and the axial and shear strain
energies in the matrix. Rauchs et al. (11.12] 5htained
numerical solutions of the energy release rate G by
using the finite element method. However, their
oversimplifications resulted in severe errors. Quek[13 ]
obtained numerical solutions of the release rate of the
strain energy by employing stress functions. Howev-
er, some terms were neglected, such as the work
done by the friction stress, the axial and radial dis-
placement continuity conditions in the fiber and ma-
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trix at the bonded interface, the Poisson’s effect, and
the shear strain energy in the fiber, etc.

In this paper, we give all the stress solutions in
the fiber and matrix with friction at the debonded in-
terface obtained by introducing stress equilibrium e-
quations, the boundary- and continuity- conditions.
Based on the energy equilibrium between the work
U,, done by the pull-out stress oy, the work Uj done
by the friction stress r,, the strain energy U, in the
fiber and matrix, and the interfacial debonding ener-
gy U,, expressions for the energy release rate G and
bridging constitutive relationship are derived. The es-
tablished model includes the axial, shear and radial
stresses in the fiber and matrix, the axial displace-
ments in the bonded and debonded regions, the ther-
mal residual stresses due to the fiber/matrix thermal
mismatch, and the Poisson’s effect, which ensures
its high accuracy.

1 Interfacial stress analysis

Fig. 1 shows a composite specimen loaded by
bidirectional symmetric stresses, wherein an I-type
matrix crack is bridged by parallel fibers. Frictional
sliding occurs at position x at the debonded interface,
a distance from the matrix crack tip. The axial dis-
placement mismatch between the fiber and the matrix
leads to the formation of matrix crack opening dis-
placement (COD) profile 2u(z).
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Fig. 1. Schematic diagram of an I-type matrix crack bridged by

parallel fibers.

A single fiber embedded in a concentric cylindri-
cal matrix is extracted from Fig.1, as shown in
Fig.2. The fiber volume fraction is V;= r3/r5 and
the matrix volume fraction is V,,=1— V. L is the
embedded fiber length and Lg is the interface debond
length. Both the fiber and matrix are considered to be
linear-elastic and transversely isotropic. A cylindrical
coordinate (r, @, z) is defined and the z axis repre-
sents the fiber axial direction. The loaded and embed-

ded ends are z =0 and z = L, respectively. The pull-
out stress gy, is parallel to the z axis.
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Fig. 2. Frictional sliding at the debonded interface under the pull-
out stress.

The equilibrium between the fiber axial stress
0;(z) and the interfacial shear stress 7;(z) requires
doi(z) 2
—7;‘—'=<—‘—rKZ). (1)

b4 r

where o} (z) is considered to be an average axial

stress on the fiber cross section.

The equilibrium between the axial stresses in the
fiber and matrix requires

Viop, = Voo (z) + Vioi(z). (2)

According to Hsueh!®! and Chiang[14], if an av-
erage constant friction stress v, along the debonded
interface is determined by the interfacial roughness
effect, combining Egs. (1) and (2), we can obtain

27,
oi(z) = op — :1 z, (3)
z _ Vi2r, 22z,
Um(z) - Vm rlz - r1 z. (4)

For 3D axisymmetric problems in the cylindrical
coordinate, four non-zero stress components are un-
known: o", ¢, 6%, o = o except o =o6" =0,
6% = 6% = 0. The equilibrium equations governing
the axisymmetric stress solutions are expressed as

r rz r [}
os;, oty o, —-o0;
or + oz M r =0 (5a)
do; ot Tl
= T or Ty =0. (5b)
The stress-strain relationships including the

thermal effect are written as

r .a_u’l' L r z [} T
&= = Ei[ai —v; (6] + 0})] + a; AT,

(6a)
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u: 1 4 z r T
5? =, 7 E["l - v} + o)) ] + a; AT,
(6b)
z aui 1 z r & L
€ = 5y T E["l —vi(a] + )] + a;AT,,
(6¢)
" a_uf 21+ v) .
7i = ar Ei rl ) (6d)

where i=f, m represent the fiber and matrix, respec-
tively; u and o are the displacement and stress, re-
spectively; E and v stand for the elastic modulus and
Poisson’s ratio, respectively; a is the thermal expan-
sion coefficient; the superscripts T and L denote the
transverse and longitudinal directions, respectively;
AT, is the temperature change from the room tem-
perature due to thermal processing and AT, <0; the
superscripts r, @, rz and zr represent the radial,
circumferential and tangential directions, respective-
ly.

2 Boundary conditions of stresses and dis-
placements

oi(z = Lg) = ap — 2r:;Ld = 04, (7a)

oz = La) = m%d (7b)

oi(r =ri,z) =0 (r=rg2), (7¢)
tir =r,z2) =7o(r = r,2) = t(2),

(7d)

o (r =ry2)=0, (7e)

to(r = ry,2) =0, (71)

ui(r = ri,z) = u (r =ry,z2), (7g)

ui(r = ri,2) = ul(r = 7, 2), (7h)

where Egs. (7a) and (7b) represent the continuity
conditions of axial stresses in the fiber and matrix at
the crack tip z = L4, respectively; Egs. (7¢) and
(7d) stand for the continuity conditions of radial and
shear stresses in the fiber and matrix at the bonded
interface, respectively; Eqgs. (7e) and (7f) denote the
boundary conditions of radial and shear stresses in the
matrix at r = r,, respectively; Eqgs. (7g) and (7h)
are the continuity conditions of radial and axial dis-
placements in the fiber and matrix at the bonded in-
terface, respectively; o4 is the axial stress in the fiber
at x = Lg,.

In comparison, Quek'®! neglected Egs. (7g) and

(7h), and directly adopted Egs. (7a)—(7f) and the
fiber-field axial stresses in the fiber and matrix as
boundary conditions for stress solutions.

3 Stress solutions

When o7 (2) = o'? (z) is assumed for the fiber,

Egs. (6b) and (6¢) can be further expressed as

% L vt ()] + alAT,,
E;

(8)

1-vpai(z) -

aui
= Ef[af(z)

o2 - 207 (2) ] + aé‘ATp. (9)

From Egs. (1), (2), (5a), (7d) and (7f), the

matrix shear stress 7. (7, z) can be solved

to(r,z) = ti(z).
By combining Egs. (6¢), (6d) and (10), and
integrating the variable r, we can obtain
o (r,z)+ afn(r, z)
A2(0+ v ) r2\dri(z)
B

(11)

r1 Ym

+2f1(2) + a;EmATp/um.

By combining Egs. (5a), (7¢), (7e), (8), (9)
(10) and (11), and integrating the variable r, the

matrix radial stress o, (7, z) is solved

Ars 1+
o (ryz) =-— _Tzl:_ L "B,
ry 2v,, Vo
1+ 2 142y, d
: v 2 om sy jl T; (zz)

+f2(z)/r + fi(z)
+ apEnAT,/ 2y, (12)

where the functions f1(z) and f,(z) are expressed
respectively as

f1(2)~*/10‘f(2)+ ZdTT(z){A ':l‘i'v In(ry/ry)

+M(rf/r§— 1):'

: S
vmlnr2:|}

[ 3+2y, 1+
Al -2
4y, YV

~ @R EnAT /20 m, (13)
A
fo(z)= Ari{ a;(z) _ :lzdtd(zz) l:l + len( ol 71)
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+(L:V2—:'Q(rf/r§—1)”. (14)

From Egs. (11)—(14), the matrix radial and
circumferential stresses can be obtained

A_T‘idti(z){l + vy

o (r,2z) = . dz o [In(r2/7)
- A(rz/r - DIn(ry/ry)]
R - A - )
+ A2/ 72 - 1)oi(2), (15)
Ar? de, 1

o e) =2 A (L)

+A(1 + r2/r2)ln(r2/r1)]

1+2 142y,
R A )
1+
—-V_vm(l r2/r2) +1}

-1+ ri/rz)o‘?(z)
+ atEn AT,/ v (16)

By combining Eqs. (6a), (6b), (7g), (7h),
(9), (15) and (16), a differential equation of the

fiber axial stress o%(z) is obtained
2at(2)
dz?

where the coefficients M and N are expressed respec-

- Mo(z) =— N, (17)

tively as
M =[E (1 -2A;v))/E¢+ A(1 = 2A1vy)]
/(A3 = A1A3), (18a)
={A(1 =24 vp)op + [2/11(a; + arl;/um - a;r)
- af]E AT /(A = A123), (18b)
At =(Epvi/E¢+ Avp)/[En(1 = vi)/E;
+ 24 + vy + 1],
1+v

(18¢c)

Ay = vm/lri{ Bln(ry/r)(1+ A)

1+ 2vpy,
T 4y,
1+,
- o (l—rl/r2)+1/2
1+v
_1+2Vm
2vn
1+,
_ uu (l—rl/r2)+1}

m

(1+7%/+%)

(184d)

Ay =4 TR0/ r) (14 AL+ 73/ rD)

(1+ r%/r%)

(18e)

By applying the stress continuity conditions in
Egs.(7a) and (7b), the fiber axial stress o7 (2) in
the bonded regions is obtained

(z) = Cexpl— B(z — Ly)] +o;

o, = N/M, (19)
where the coefficients C and 3 are expressed respec-
tively as

C=o04-0; =o0y,—-0; —2t.La/7y,

B> = M. (20)

It should be pointed out that the far-field fiber

axial stress o; = E{V0y/E. obtained by Chiang!*]
and Budiansky!''®) is a special case of neglecting Pois-
son’s effect or thermal effect in Eq. (19). The ther-
mal effect including the Poisson’s effect is determined
by the transverse and longitudinal thermal expansions
in the fiber and matrix. However, the thermal effect
neglecting the Poisson’s effect is determined only by

the longitudinal thermal expansion in the fiber.

Substituting Egs. (1) into (19), the shear stress
7,(z) at the bonded interface is

r;i(z) = %C,Bexp[— B(z — Ly)]. (21)

From Eqgs. (5) and (19), the fiber shear stress

7 (r, z) in the bonded regions is
Zez) = Grexpl- plz ~ L],
(22)

i (r,z) =

Combining Egs. (7d) and (19), the matrix axial
stress 0% (7, z) in the bonded regions can be obtained:
— ACexp[— B(z — Lo ],
o0 = Aoy — a7 ). (23)

m

o’ (r,z) = a,,

Combining Egs. (21) and (10), the matrix
shear stress 7. (r, z) in the bonded regions is

ACB(r% —r?)

to(r,z) = >y exp[— B(z — Ly ].

(24)

4 Interfacial debonding criteria

Four energy terms satisfy the following equilibri-
um relationship in the process of interfacial debond-
ing:

U, = U+ U+ U, (25)

where U,= U+ Uy, is the sum of strain energies in
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the debonded and bonded regions, Uj is the work
done by the friction stress 75, U, is the work done
by the pull-out stress ¢, and U, is the interfacial
debonding energy.

From Egs. (3), (4), (19) and (22)—(24),
U and Uy, are calculated respectively by

Lyrry [(a?(z))z (TT(T,Z))Z:I
Uyg= jo Jo 2E, + 2G, 2nrdrdz
Lifﬁ [(al(r,z))2+_(r;(r,z))2
* J‘0 r 2Em 2Gm
1
| 2 _Zz'sade 47 Ld
2B\ Py 3,
nr% z'de N ZNArzLj N mlzrng
4G ' 3E. | 4G,
. [4r;1n( raf 1) +4rfr§ - ri - 3rg], (26)

(d5(2))? (r'fz(r,z))2
U= f f [ 2E; 2G; ]hrdrdz
2 (am(r,z))2 (2(r,2))?
+>[Ld'[r1 |: 2E 2G,,
2E [Cz/(zﬁ) + (O'f )2(L Ld) +2C0'f /,B]

xCBr; w(r2—1%)
26, T 2B, WRC/@

+(o (L —Ly) —2ACam/B]
. nA2C23[4r;ln( ro/ r1) +4rfr§ -
32G,,

]2nrdrdz

}2nrdrdz

r‘:—3r;]
’

27
where G;(i=1f, m) are the shear moduli of fiber and
matrix and G; = E;/[2(1+,)].

The axial displacements in the fiber and matrix
are calculated respectively by

Ligy ~ 21, L ¢i(z)
'wf(Z) =J. dng:z/rldz +J; UfEiZ z
2 2
_ Oy B B (L — 2%)
_Ef(Ld 2) riEg
+£+—(L Ly, (28)
E:f
2At,z/ry L g*(r,2)
o =.[ ds_d +j Omire %/
w Z) z Em = Ld Em *
3 At (L% — 22) _AC
B rlEm Emﬂ

= 2]

¥ ;—Z(L - Ly, (29)

where the effects of exponential terms at L —> o0 are
neglected. The directions of w¢(z) and w,(z) are
contrary to the z axis.

The relative axial displacement v (z) between
the fiber and the matrix is calculated by

v(z) =1 wiz) — wy(z) |
_ Ecrs 22 %y _
=" nEE, v, Lam )+ pla- )
CE.
* EfEmeB’ (30)

where the far-field axial strain in the fiber is equal to
that in the matrix, and the expression o; /E;=o_. /

E ., approximatedly holds.

The work Uy done by the friction stress r at the
debonded interface is calculated by

Ld
U =2nr1J rlv(z) -
0
2Ecr§L3 abz'st

:21177‘1 [— 3r1EfEme M 2Ef

, CEcrly _ ric 8Ly
EEnVaB  2Gn |’

t,r19/(2GL,) is the contribution of
the matrix shear deformation to the crack opening

ushear]dz

(31)
where u go,r =

displacement. ¢ is a nondimensional parameter and

expressed as!1%]

$ =-[2lnV i+ V(3 - Vpl/(2V2). (32)

The work U, done by the pull-out stress oy, is
expressed as
U, = 7ri6yUgeond- (33)
Here, U gupong is the additional displacement of com-
posite due to interfacial debonding and defined as the
difference between the fiber displacement w(z) at
the fiber loaded end z =0 and the composite displace-
ment w. in the absence of interfacial debonding

wi(0) — w, = wi(0) - O'FOL/Ef

_ols wly ¢ oLy

E; rE; E E¢’

where the far-field axial strain in the fiber is equal to
that in the composite at L —>o0.

U debond =

(34)

According to the fracture mechanics, interfacial
debonding can be considered as II-type crack growth.
The interfacial debonding energy U, changes by a fac-
tor 2nry*dL 4 as the interface crack with the length of
L 4 advances a length dL,.
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Combination of Egs. (25)—(27), (31) and
(33) leads to the solution of the energy release rate G

= 21t1r1 Zg: = 2L+ A,La + 23,
1'% E{V.E’
o 3Bzl mfr. AaAfry oyt
" rPEELV. 8Gr  8.3G, E¢’
r162b ri(og )t riowo;  tilop— of)
3=%E, "V T4E;, T 2E; T EB
Eczlo,—0;) reon ri(an)?
2E(E,VaB  E.f = 4AE,
,Br%rs(ab - a:o) rlrg r1¢1:§
16G;  8G; ' 2G.
. A’ fr(on —07) Akl
16r2Gy, 871G’

Ay = 4rgln(r2/r1) + 4r%r§ - r‘: - 3r;. (35)
Eq. (35) shows that the energy release rate G is a
second-order function of the debond length L4 when
the material- and geometry- parameters are given. By
introducing an interfacial debonding criterion G=T7,

the critical debond length can be determined by solv-
ing Eq. (35):

At Jal-an(as-T)
Ly, = 24 . (36)

For the two roots above, only the smaller one
L 4 is physically meaningful and we will discuss it be-

low.

Compared with Eq. (35), if the thermal effect is
neglected, the results obtained by Hsueh'® and Chi-

ang''*! are respectively

r1VaoEn
4EE,
Ecri
T rE{VaEn
rlEmeai
4E_E; °

2t E.L4\?

G: _rIVmEm

OpTs
E;

Ly - —2"L4

(37)

2
Ecrs OpTs

VEfVmEm N Ef
_ oy,
2q9E¢°
2 _ _4EGnm
T = V.E.E¢$"

Ly

(38)
(39)

[16]

According to Marshall''®’, for parallel bridging

fibers in matrix crack growth, the bridging constitu-
tive relationship is described as the relationship be-
tween the bridging traction T (x) and the half COD
profile u(z). From Egs.(30) and (36), we obtain
E.r, gy 2t .E,

— | ————e. 2 P
v == T EE.v.ra T E T AEE, V. T
(O'b - dfm)Ec
EE VB’ (40)
E.V.
u="p 2(0), T(z) = o,(x)V;. (41)

Compared with Eq. (40), if the thermal effect is
neglected, the result obtained by Hsueh!® is

VmErn 2 F
v(()) :Il__gb__" (42)

5 Results and discussion

The fiber-reinforced composite SiC/T;-6Al-4V
and software Maple9 were adopted in numerical cal-
culations. The parameters used in the calculations
are; E;=400GPa, E_,=115GPa, v{=0.17, vy, =
0.3, 4T =2.63x107°T, oy =5%X107°C,
and al = a; =10 X 107¢ T!8. The fiber tensile
strength o0,=4.19 GPa, the interfacial shear strength
.~ 120 MPal'®). The fiber radius r; = 10 um, the

matrix radius 7y = 100 gm, and the fiber volume frac-
tion V;=1%.

Fig.3 shows distributions of the energy release
rate G versus the normalized debond length Lg/r;
without the thermal effect. Theoretically, it should
be pointed out that the friction stress t, affects G in
the form of E.z2/(r1E{V,Ey) in Egs. (35), (37)
and (38), and the energy release rate decreases and
then re-increases with the increase of L4/ 7. Howev-
er, the re-increasing part is physically meaningless
because interfacial debonding appears only at G > I';
(here, the interfacial debonding toughness is assumed
as I'j'=1 J/m?) and stops when the condition G = I';
is satisfied at some applied pull-out stress oy. There-
fore, the critical debond length is taken as the smaller
one L4 in Eq.(36). The conclusion was also verified
by Liu'®). However, Liu’s conclusion was based on
the Lamé method, suffering from similar setbacks to
that in the shear-lag models. The G values obtained
by us are smaller than those obtained by Hsueh and
Chiang at the same L4/r;, because Hsueh neglected
the shear and radial stresses, the shear strain energy
in the fiber and matrix, the variation of axial stress in
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the matrix with radial positions, and the Poisson’s
effect, and Chiang only further considered the shear
strain energy in the matrix.

—o— Present model
--5-- Chiang’ s model
--#-- Hsueh’ s model

Energy release rate G (J / m?)
W

Ldl/rlé

0 10 20 30 20
Normalized debond length L,/ r,

Fig. 3. Distributions of the energy release rate G versus the nor-
malized debond length L4/ r; at the pull-out stress o, = 1 GPa, the
temperature change AT, =0 and the friction stress r,= 10 MPa.

Fig.4 illustrates the effect of friction stress r on
the energy release rate G without the thermal effect.
In terms of different friction stress z,, the differences
between the G values are relatively small when L,/
ry is small, and become large at larger L4/ 7. At the
same L4/ry, increasing friction stress r, results in
smaller G, and longer debond length before interface
failure. The G ~ L 4/ curve tends to be a horizontal
line when the {friction stress r, decreases and ap-
proaches the minimum value r,=0. The energy re-
lease rate reaches the maximum value G = 6.02 J/m?
at v, = 0, showing the weakest ability for the inter-
face to resist failure.

—o—1,= 10 MPa

5 —a—17,=5MPa
4 —~o0—1, =2 MPa
—&—1,=1MPa
~4—1,=0MPa

Energy release rate G (J / m?)
i)

¢’ 1 g 0 1

50 100 150 200 250 300
Normalized debond length L, / r,

Fig. 4. Distributions of the energy release rate G versus the nor-

malized debond length L4/ at the pull-out stress o, =1 GPa, the

temperature change AT, =0, and the friction stress 7, = 0 MPa,

1 MPa, 2 MPa, 5 MPa, and 10 MPa, respectively.

Fig.5 illustrates the effect of pull-out stress oy,
on the energy release rate G without the thermal ef-

fect. The G ~ L4/ ry curve tends to be a horizontal
line at low oy,. At the same Ly/ry, G is larger for
higher o1,, which was also obtained by Wul20] by ap-
plying the principle of minimum potential energy at
low strain levels. The difference lies in that theoreti-
cally no re-increasing tendency appears in the G ~
L4/ 7y curves obtained by Wu.

25
- —0—0,=1GPa
NE 20k ob
= —5—0,=1.5GPa
> —%—0,=2GPa
2 15L *
[
2
B 10}
2
e
2
E 5 C\O\ﬂ\o\o\‘g
0 . ;

20 40 60 80
Normalized debond length L,/ r|

Fig. 5. Distributions of the energy release rate G versus the nor-
malized debond length L4/ 7 at the friction stress r,= 10 MPa, the
temperature change AT, =0, and the pull-out stress g}, = 1 GPa,
1.5GPa, and 2 GPa, respectively.

Fig. 6 illustrates the effect of temperature change
AT, on the energy release rate G. It can be seen that
larger AT, can result in smaller G and can slow down
the interface failure. By applying the shear-strength-
based criterion, Quek!!®) obtained the same conclu-
sion. In Eq. (35), the thermal effect is represented
by the far-field fiber axial stress a?’ . Then, in Egs.

(18), (19) and (21), o; increases and then the

shear stress r;(z) at the bonded interface decreases
with the increasing |AT,| .

5% —0— ATP = 0°C
—a— AT,=-50C
ar —#— AT,=-100C

Energy release rate G (J/ m?)
()

10 20 30 20
Normalized debond length L,/ r,

Fig. 6. Distributions of the energy release rate G versus the nor-
malized debond length L 4/ 7, at the friction stress t,=10 MPa, the
pull-out stress 0, = 1 GPa, and the temperature change AT,=0T,
—50TC, and —100C, respectively.
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Fig. 7 shows the bridging constitutive relation-
ship between the bridging traction T'(x) and the half
COD profile u (z) without the thermal effect. The
appearance of positive u (x) requires the increase of
bridging traction T(z) to a critical value to overcome
the friction stress 7,. The T(z) values are slightly
smaller than that obtained by Hsueh at the same
u(x) value, showing a stronger ability to resist the
interface failure with the increase of r,. The conclu-
sion can also be directly deduced from Eq. (35): the
shear effects in the fiber and matrix and the Poisson’s
effect, neglected by the shear-lag models, become
more remarkable with the increase of ..

—©— Present model, 7,= 10 MPa

30} - 4-- Hsueh’ s model, 7, = 10 MPa
‘“  |—o— Present model, 7, = 20 MPa
% --«-- Hsueh’ s model, 7, = 20 MPa
B~
= 201
2
5
g
o0
-g, 10
=
o

r 0.5 10 13 70
Half COD profile u (um)
Fig. 7. Bridging constitutive relationships at the temperature

change AT, =0, the interfacial debonding toughness I';=1]/m?,
and the friction stress 7,= 10 MPa and 20 MPa, respectively.

Fig. 8 illustrates the effect of friction stress r, on
the bridging constitutive relationship without the
thermal effect. T (x) increases with the increasing
friction stress r, at u > 0. Because the fiber tensile
strength o, = 4. 19 GPa, from Eq. (41), the maxi-
mum bridging traction T = 40. 19 MPa. Before the
friction stress r, reaches the interfacial shear strength
r,, the fiber axial stress may exceed the fiber tensile
strength and fibers will break. Therefore, an opti-
mum interface exists for obtaining a maximum inter-
facial debonding toughness I';.

Fig.9 illustrates the effect of interfacial debond-
ing toughness I'; on the bridging constitutive relation-
ship without the thermal effect. The curves T(x)~
u(z) start at the origin at I'; =0]/m?, which is also
directly obtained from Eq. (36). T (x) increases
with the increasing I'; at the same u(x). The T(x)
~u(z) curve tends to be a horizontal line with the
increase of I';, showing a stronger ability to resist the
interface failure. ‘

I =e=7 =30MPa —e—7 =3 MPa
—2—17,~20MPa 417 =1MPa

£ |-o~1,=15MPa °

S 30

< jt—1,=10MPa

=1

g

g

E 20

an

£

an

=]

‘=

2 10 :

00 05 1.0 15 20 25 30

Half COD profile u (um)

Fig. 8.  Bridging constitutive relationships at the temperature
change AT, =0, the interfacial debonding toughness I'; = 1 J/m?,
and the friction stress r,= 1 MPa, 2 MPa, 5 MPa, 10 MPa,
15MPa, 20 MPa, and 30 MPa, respectively.

15¢
£
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g —o—I=0J/m’
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= —2—T=3]/m?
m
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0.2 0.4 0.6 0.8 1.0
Half COD profile u (um)
Fig. 9. Bridging constitutive relationships at the temperature

change AT, =0, the friction stress 7,= 10 MPa, and the interfacial
debonding toughness I';=0J/m?, 1J/m?, 2]/m?, and 3]/m?, re-

spectively.

Fig. 10 illustrates the effect of temperature
change AT, on the bridging constitutive relationship.
The bridging traction T ( z ) increases at large
|ATP| , showing that the thermal residual stresses
resulting from temperature drop can help to slow
down the interface failure.

Generally, fiber bridging can be divided into
three distinctive microscopic processes: (a) fiber
bridging without frictional sliding at the debonded in-
terface, (b) frictional bridging associated with inter-
facial debonding and frictional sliding at the interface,
and (c) pull-out bridging accompanied by fibers fail-
ure. The above three continuous processes are consis-
tent with the transformation process from fiber bridg-
ing, fiber failure to fiber pullout, indicating an appro-
priate strain hardening followed by a strain softening.
However, the third process on pull-out bridging is not
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Fig. 10. Bridging constitutive relationships at the friction stress

7.= 10 MPa, the interfacial debonding toughness I'; =1 J/m?, and
the temperature change AT,=0TC, -50TC, and - 100 TC, re-

spectively.

included in Figs. 7—10 and interface failure is not
considered.

As to the frictional bridging, the bridging con-
stitutive relationship for determining the bridging
traction T (x) obtained from the half COD profile
u(x) was expressed as!'% 16!

T(x) =a + bu(x)™, (43)
where the coefficients a, b, n are constants correlat-
ed to the material- and geometry- parameters, and the
interfacial properties, etc.

By applying a mechanical balance between the
external tensile stress and the internal bridging
stress, Marshall'’® found the power exponent 7 =
0.5, which shows that T (x ) increases with the
square root increase of u{x).

By fitting a series of discrete data, in Fig.8, the
power exponents are calculated as n = 0.50048,
0.50056, 0.50083, 0.50135, 0.50193, 0.50260,
and 0.50414 at the friction stress z, = 1 MPa,
2MPa, 5MPa, 10MPa, 15MPa, 20 MPa, and
30 MPa, respectively; in Fig. 9, n = 0.50865,
0.50135, 0.49352, and 0.48565 at the interfacial
debonding toughness I'; = 0]J/m?, 1J/m?, 2J/m?,
and 3J/m?, respectively. The friction stress 7 has
less remarkable effect on the power exponent z than
the interfacial debonding toughness I';. On the one
hand, from Egs. (35), (36), (40) and (41), the in-
terrelationship between the bridging traction T (z)
and the half COD profile # (x) becomes lower at
7,>0 and is equal to zero at 7,=0, corresponding to
the case of no fiber bridging. On the other hand, for
a strong interface with high friction stress r,, more

axial and shear deformations in the fiber and matrix
occur and more fibers fail, deviating the power expo-
nent from the value n =0.5. Therefore, the power
law relationship » = 0.5 is more acceptable in the case
of a weak interface with relatively low friction stress
7, and interfacial debonding toughness I'; than in a

strong interface case.

6 Conclusions

In this paper, an improved theoretical model
simulating the properties of frictional bridging is pre-
sented by using stress equilibrium equations, includ-
ing the friction at the debonded interface and the
thermal effect, and relatively perfect stress solutions
in the fiber and matrix are obtained. Based on the en-
ergy equilibrium, an expression for the energy release
rate G is derived. By introducing an interfacial
debonding criterion GZ=T;, the bridging constitutive
relationship is obtained. Numerical calculations are
carried out for the fiber-reinforced composite SiC/
T;-6Al-4V to explore the effects of related parameters
and the results are also compared with those obtained
by using other existing models. In summary,

1) A method for determining the critical debond
length is obtained based on the interfacial debonding
criterion G=T',.

2) The G~ L4 curve tends to be a horizontal line
when the friction stress r, decreases and approaches
zero, where the energy release rate G becomes a con-
stant independent of the debond length L.

3) Theoretically, the curves G ~ L4 display the
first decreasing and then re-increasing tendency.
However, the re-increasing part is physically mean-
ingless because interfacial debonding appears only at
G >T';, and stops when the condition G = I'; is satis-
fied.

4) With the increase of friction stress r,, the
shear effects in the fiber and matrix and Poisson’s ef-
fect, neglected by the shear-lag models, become more
remarkable for suppressing the interface failure.

5) The thermal residual stresses due to the fiber/
matrix thermal mismatch can slow down the interface
failure.

6) The power exponent n =0.5 is more accept-
able in the case of a weak interface with relatively low
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friction stress r, and interfacial debonding toughness

I; than in a strong interface case.
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